Bone morphogenetic proteins and a signalling pathway that controls patterning in the developing chick limb.
نویسندگان
چکیده
We show here that bone morphogenetic protein 2 (BMP-2) is involved in patterning the developing chick limb. During early stages of limb development, mesenchymal expression of the Bmp-2 gene is restricted to the posterior part of the bud, in a domain that colocalizes with the polarizing region. The polarizing region is a group of cells at the posterior margin of the limb bud that can respecify the anteroposterior axis of the limb when grafted anteriorly and can activate expression of genes of the HoxD complex. We dissect possible roles of BMP-2 in the polarizing region signalling pathway by manipulating the developing wing bud. Retinoic acid application, which mimics the effects of polarizing region grafts, activates Bmp-2 gene expression in anterior cells. This shows that changes in anteroposterior pattern are correlated with changes in Bmp-2 expression. When polarizing region grafts are placed at the anterior margin of the wing bud, the grafts continue to express the Bmp-2 gene and also activate Bmp-2 expression in the adjacent anterior host mesenchyme. These data suggest that BMP-2 is part of the response pathway to the polarizing signal, rather than being the signal itself. In support of this, BMP-2 protein does not appear to have any detectable polarizing activity when applied to the wing bud. The pattern of Bmp-4 gene expression in the developing wing bud raises the possibility that BMP-2 and BMP-4 could act in concert. There is a close relationship, both temporal and spatial, between the activation of the Bmp-2 and Hoxd-13 genes in response to retinoic acid and polarizing region grafts, suggesting that expression of the two genes might be linked.
منابع مشابه
Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.
The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the ...
متن کاملGremlin1 induces anterior–posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration
Gremlin1 (grem1) has been previously identified as being significantly up-regulated during regeneration of Xenopus laevis limbs. Grem1 is an antagonist of bone morphogenetic proteins (BMPs) with a known role in limb development in amniotes. It forms part of a self-regulating feedback loop linking epithelial (FGF) and mesenchymal (shh) signalling centres, thereby controlling outgrowth, anterior ...
متن کاملTransient downregulation of Bmp signalling induces extra limbs in vertebrates.
Bone morphogenetic protein (Bmp) signalling has been implicated in setting up dorsoventral patterning of the vertebrate limb and in its outgrowth. Here, we present evidence that Bmp signalling or, more precisely, its inhibition also plays a role in limb and fin bud initiation. Temporary inhibition of Bmp signalling either by overexpression of noggin or using a synthetic Bmp inhibitor is suffici...
متن کاملBMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb.
Dorsoventral (DV) patterning of the vertebrate limb requires the function of the transcription factor Engrailed 1 (EN1) in the ventral ectoderm. EN1 restricts, to the dorsal half of the limb, the expression of the two genes known to specify dorsal pattern. Limb growth along the proximodistal (PD) axis is controlled by the apical ectodermal ridge (AER), a specialized epithelium that forms at the...
متن کاملActivation of Fgf-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb.
Bone morphogenetic protein-2 (BMP-2) has been implicated in the polarizing region signalling pathway, which specifies pattern across the antero-posterior of the developing vertebrate limb. Retinoic acid and Sonic Hedgehog (SHH) can act as polarizing signals; when applied anteriorly in the limb bud, they induce mirror-image digit duplications and ectopic Bmp-2 expression in anterior mesenchyme. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 120 1 شماره
صفحات -
تاریخ انتشار 1994